02. Force-Free Motion
Force-Free Lateral-Directional Motion
Defining the State
Let's start by defining the state vector that we'll be tracking when analyzing the lateral-directional motion.
\mathbf{x} = \begin{bmatrix}
x_I \\
y_I \\
z_I \\
\phi \\
\theta \\
\psi \\
u \\
v \\
w \\
p \\
r
\end{bmatrix}
We can define each of these variables:
Variables | Physical meaning |
---|---|
x_I, y_I, z_I | x, y, z position in inertial frame |
\phi, \theta, \psi | Euler angles |
u, v, w | x, y, z velocity in body frame |
p, r | Body rates about the x and z axes |
Note that the pitch rate q is not included in the state.
Force-free equations of motion
The equations of motion for the force-free case are as follows:
\begin{aligned}
\dot{x}_I &=
u (\cos \theta \cos \psi) + v (\sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi) + w (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \\
\dot{y}_I &= u (\cos \theta \sin \psi) + v (\sin \phi \sin \theta \cos \psi +
\cos \phi \cos \psi) +
w (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \\
\dot{z}_I &= - u \sin \theta + v \sin \phi \cos \theta + w \cos \phi \cos \theta \\
\dot{\phi} &= p + r \cos \phi \tan \theta \\
\dot{\theta} &= - r \sin \phi \\
\dot{\psi} &= r \cos \phi \sec \theta \\
\dot{u} &= rv \\
\dot{v} &= pw - ru \\
\dot{w} &= -pv \\
\dot{p} &= 0 \\
\dot{r} &= 0
\end{aligned}
Reminder: Fixed Wing Cheat Sheet
You can find all of the equations for this module in the Fixed Wing Cheat Sheet.
SOLUTION:
- \dot{u} = rv
- \dot{v} = pw - ru
- \dot{w} = -pv
- \dot{p} = 0
- \dot{r} = 0